Douglas Cluster

Numeracy

A Guide

Introduction

What is Numeracy?

Numeracy is a skill for life, learning and work. Having well-developed numeracy skills allows young people to be more confident in social settings and enhances enjoyment in a large number of leisure activities. Numeracy across Learning: Principles & Practice

What is the purpose of the booklet?

This booklet has been produced to give guidance to staff & parents/carers on how certain common numeracy topics are taught within the Mathematics department for problem solving, following the Curriculum for Excellence guidelines used in all schools in Scotland.

Curriculum for Excellence Numeracy Strands

• Number and number processes

How can it be used?

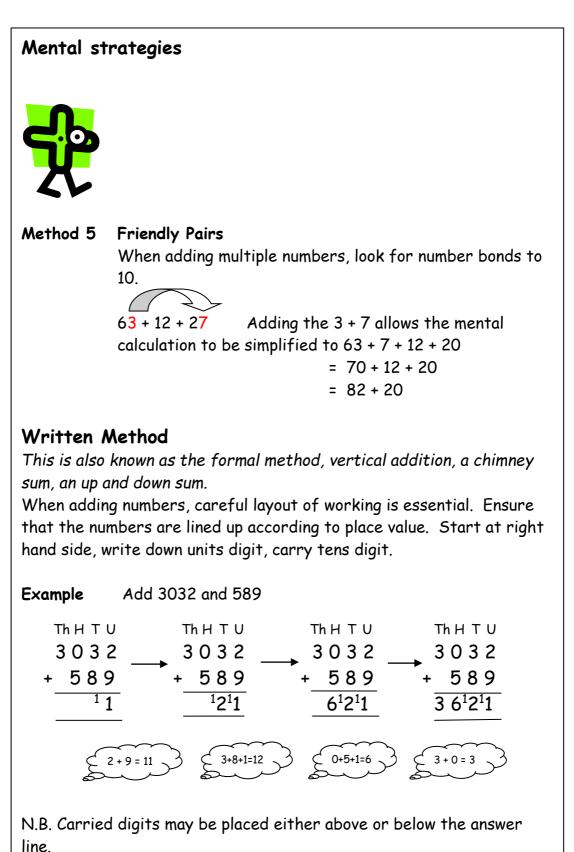
Before teaching a topic containing numeracy you can refer to the booklet to see what methods are being taught. If your daughter or son is working on numeracy at home then you may wish to use this booklet to see what methods are used in school so you can assist them. A timeline of when topics are taught in S1/S2 is also included in this booklet.

Why do some topics include more than one method?

For mental calculations, pupils should be encouraged to develop a variety of strategies so that they can select the most appropriate method in any given situation.

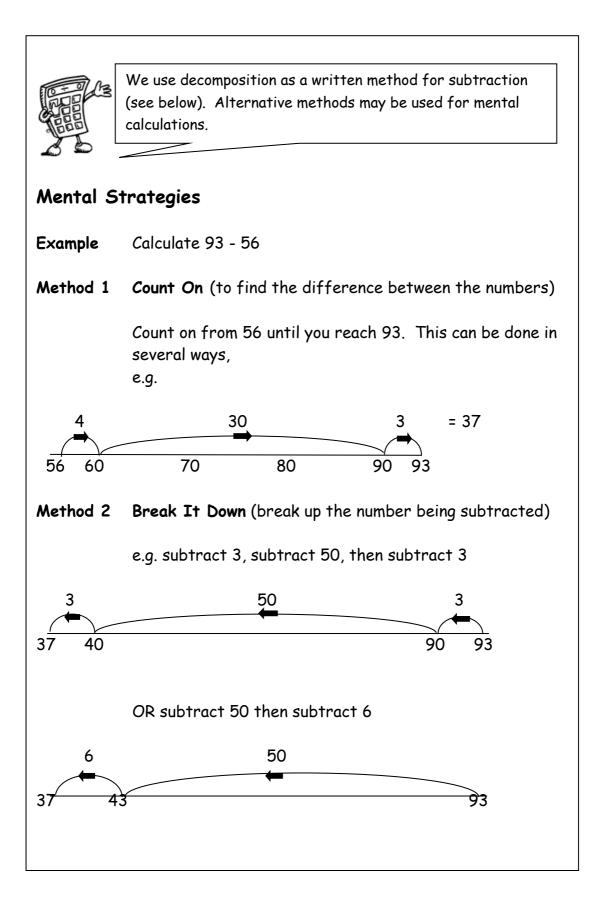
Table of Contents

Торіс	Page Number (s)
Addition	3 - 4
Subtraction	5 - 6
Multiplication	7 - 11
Division	12 - 14
Order of Calculations (BODMAS)	15
Operational Mathematical literacy (key words)	16
Time	17 - 18
Fractions	19 - 22
Percentages	23 - 27
Ratio	28 - 29
Information handling	30 - 36
Scientific Notation	37
Mathematical literacy (key words)	38 - 40
Timeline	41 - 44


Addition

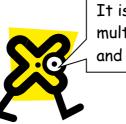
Mental st	trategies
-	Children will be taught a variety of mental addition strategies and are encouraged to select the most appropriate method in any given situation. Some examples are given below.
Example	Calculate 64 + 27
Method 1	Partitioning Add tens, then add units, then add together
	60 + 20 = 80 4 + 7 = 11 80 + 11 = 91
Method 2	Fail Safe Split up number to be added (last number 27) into tens and units and add separately.
	64 + 20 = 84 84 + 7 = 91
Method 3	Rounding & Adjusting Round up to nearest 10, then subtract
	64 + 30 = 94 but 30 is 3 too much so subtract 3; 94 - 3 = 91
Method 4	Transforming Take from one number to bring the other number to a multiple of 10.
	Take 3 from 64 and add to 27 to create the easier calculation of 61 + 30 = 91 OR
	Take 6 from 27 and add to 64 to create the easier calculation of 70 + 21 = 91
	64 + 27

Addition



4

Subtraction



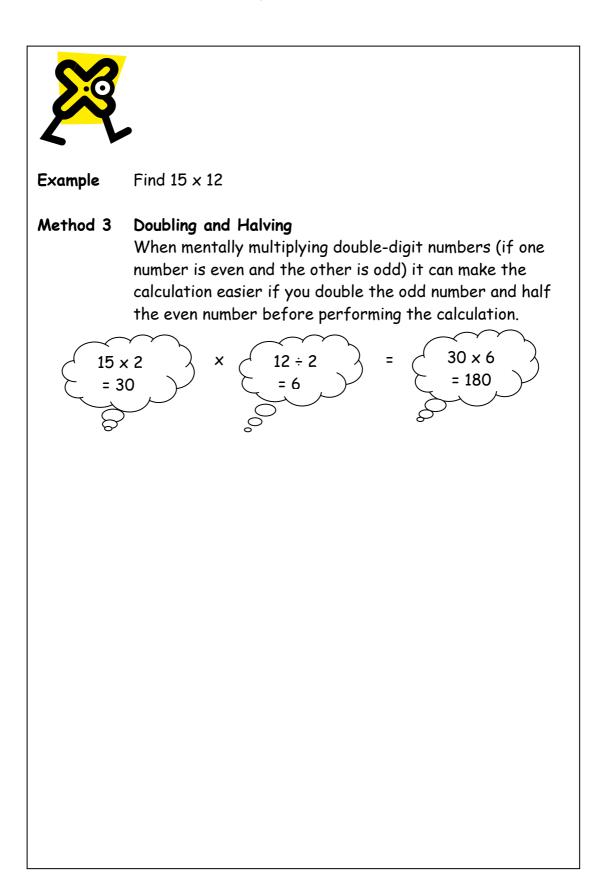
Subtraction

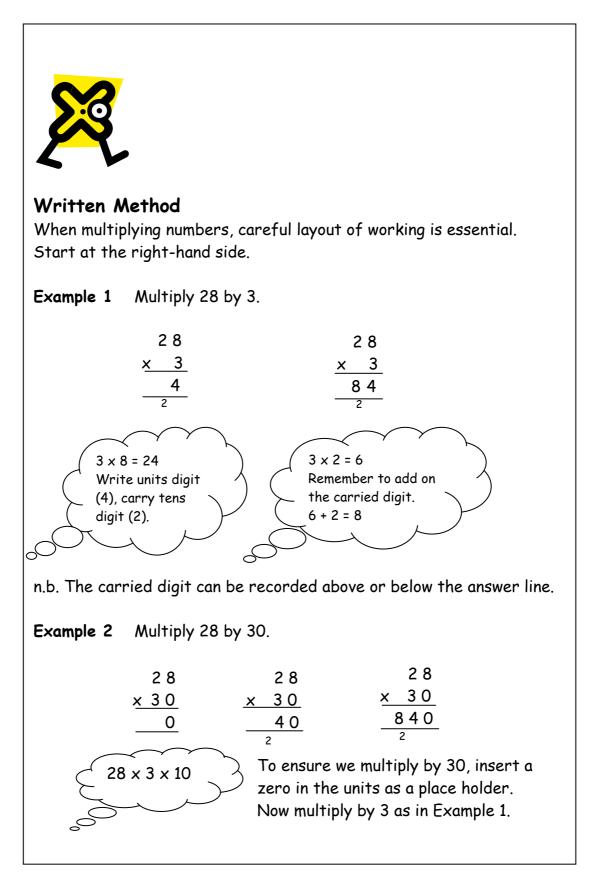
Mental St	trategies				
Example	Calculate 93 - 56				
Method 3	Rounding and Adjusting Round up to nearest 10, then subtract				
	93 - 60 = 33 but 60 is 4 too much so add 4 back on; 33 + 4 = 37				
	racting numbers, careful layout of working is essential. t the numbers are lined up according to place value. Start				
Example 1	4590 - 386 Example 2 Subtract 692 from 14597				
 Important steps for exchanging (example 1) 1. Say "zero subract 6, we can't do this" 2. Look to next column and exchange one ten for ten units, i.e. 9 tens becomes 8 tens & 10 units 3. Then say "ten take away six equals four" 4. Normal subtraction rules can then be used to complete the calculation. 					
	45 ⁸ 20 1 ³ 4 ¹ 597				
	- 386 - 692 4204 13905				

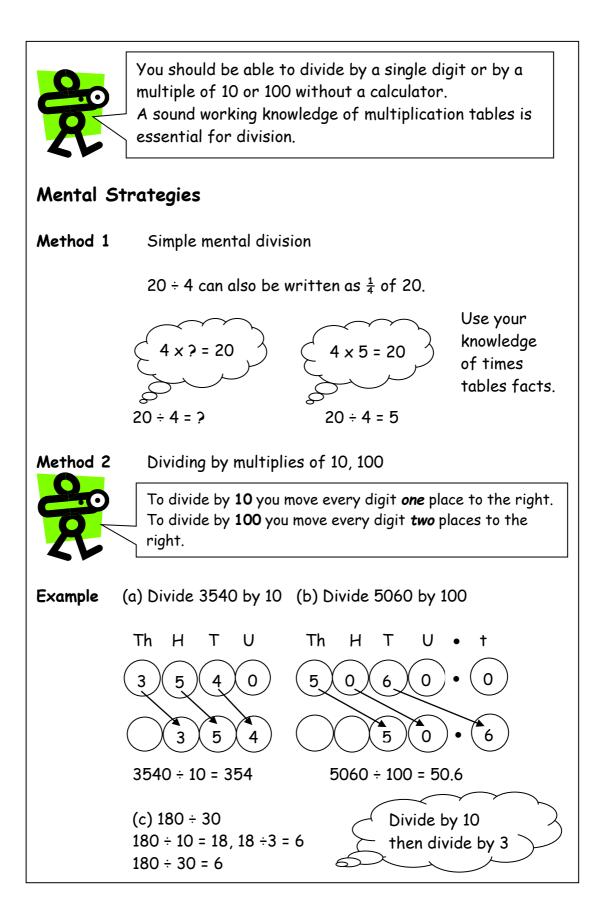


It is essential that you know all of the multiplication tables from 1 to 10 with accurate and fast recall. These are shown below.

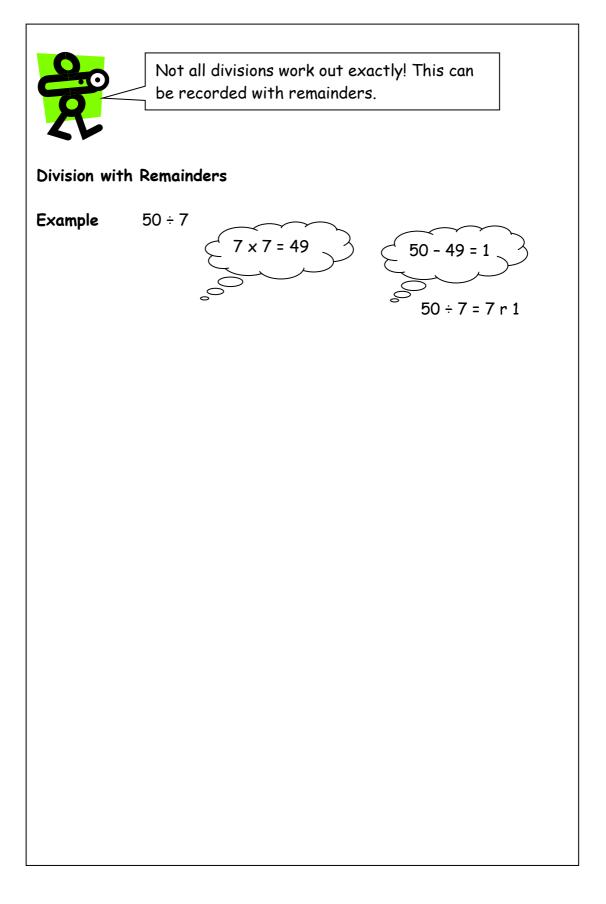
X1	X2	X3	X4	X5
$1 \times 0 = 0$	$2 \times 0 = 0$	$3 \times 0 = 0$	$4 \times 0 = 0$	$5 \times 0 = 0$
$1 \times 1 = 1$	$2 \times 1 = 2$	$3 \times 1 = 3$	$4 \times 1 = 4$	$5 \times 1 = 5$
$1 \times 2 = 2$	$2 \times 2 = 4$	$3 \times 2 = 6$	$4 \times 2 = 8$	$5 \times 2 = 10$
$1 \times 3 = 3$	$2 \times 3 = 6$	$3 \times 3 = 9$	$4 \times 3 = 12$	$5 \times 3 = 15$
$1 \times 4 = 4$	$2 \times 4 = 8$	$3 \times 4 = 12$	$4 \times 4 = 16$	$5 \times 4 = 20$
$1 \times 5 = 5$	$2 \times 5 = 10$	$3 \times 5 = 15$	$4 \times 5 = 20$	$5 \times 5 = 25$
$1 \times 6 = 6$	$2 \times 6 = 12$	$3 \times 6 = 18$	$4 \times 6 = 24$	$5 \times 6 = 30$
$1 \times 7 = 7$	$2 \times 7 = 14$	$3 \times 7 = 21$	$4 \times 7 = 28$	$5 \times 7 = 35$
$1 \times 8 = 8$	$2 \times 8 = 16$	$3 \times 8 = 24$	$4 \times 8 = 32$	$5 \times 8 = 40$
$1 \times 9 = 9$	$2 \times 9 = 18$	$3 \times 9 = 27$	$4 \times 9 = 36$	$5 \times 9 = 45$
$1 \times 10 = 10$	$2 \times 10 = 20$	$3 \times 10 = 30$	$4 \times 10 = 40$	$5 \times 10 = 50$
X6	X7	X8	X9	×10
$6 \times 0 = 0$	$7 \times 0 = 0$	$8 \times 0 = 0$	$9 \times 0 = 0$	$10 \times 0 = 0$
$6 \times 1 = 6$	$7 \times 1 = 7$	$8 \times 1 = 8$	$9 \times 1 = 9$	$10 \times 1 = 10$
$6 \times 2 = 12$	$7 \times 2 = 14$	$8 \times 2 = 16$	$9 \times 2 = 18$	$10 \times 2 = 20$
$6 \times 3 = 18$	$7 \times 3 = 21$	$8 \times 3 = 24$	$9 \times 3 = 27$	$10 \times 3 = 30$
$6 \times 4 = 24$	$7 \times 4 = 28$	$8 \times 4 = 32$	$9 \times 4 = 36$	$10 \times 4 = 40$
$6 \times 5 = 30$	$7 \times 5 = 35$	$8 \times 5 = 40$	$9 \times 5 = 45$	$10 \times 5 = 50$
$6 \times 6 = 36$	$7 \times 6 = 42$	$8 \times 6 = 48$	$9 \times 6 = 54$	$10 \times 6 = 60$
$6 \times 7 = 42$	$7 \times 7 = 49$	$8 \times 7 = 56$	$9 \times 7 = 63$	$10 \times 7 = 70$
$6 \times 8 = 48$	$7 \times 8 = 56$	$8 \times 8 = 64$	$9 \times 8 = 72$	$10 \times 8 = 80$
$6 \times 9 = 54$	$7 \times 9 = 63$	$8 \times 9 = 72$	$9 \times 9 = 81$	$10 \times 9 = 90$
$6 \times 10 = 60$	$7 \times 10 = 70$	$8 \times 10 = 80$	$9 \times 10 = 90$	$10 \times 10 = 100$







Written A	Nethod – Long multiplication
Example	Find 356 × 48
-	multiply the 356 by the 8 (= 2848). now multiply by 40, not 4 (= 14240). (it's easier to place a zero below the 2 then multiply by the 4). 356 x 48 2848 14240 17000
Step 3:-	now simply add together your answers. 17088


Division

Division

Division

You should be able to divide by a single digit or by a multiple of 10 or 100 without a calculator. A sound working knowledge of multiplication tables is essential for division.

Written Method

Example 1 192 ÷ 8

Important steps for dividing (Example 1)

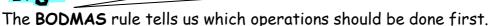
- 1. Divide from left to right.
- 2. 8 goes into 1 zero times. Record the zero and carry the remainder to the next column.
- 3. 8 goes into 19 2 times with a remainder of 3. Record the 2 carry the 3 to the next column.
- 4. 8 goes into 32 4 times. Record the 4.

Example 2Divide 4.74 by 3When dividing a decimal
number by a whole number,
the decimal points must stay
in line.1.58
 $3.4.17^24$ 2.2 ÷ 8Example 32.2 ÷ 80.275
 $8.2.260^40$ If you have a remainder at
the end of a calculation, add
a zero onto the end of the
decimal and continue with the

Long Division - This is no longer part of the curriculum. Pupils would estimate the answer and then use a calculator to get the exact answer.

calculation.

Order of Calculation (BODMAS)


Consider this: What is the answer to $2 + 4 \times 5$?

Is it

 $(2+4) \times 5$ or $2 + (4 \times 5)$ = 6×5 = 2 + 20= 30 = 22

The correct answer is 22.

Calculations which have more than one operation need to be done in a particular order. The order can be remembered by using the mnemonic **BODMAS**. n.b. Division and multiplication have equal priority, as do addition and subtraction. Always work from left to right.

BODMAS represents: (B)rackets

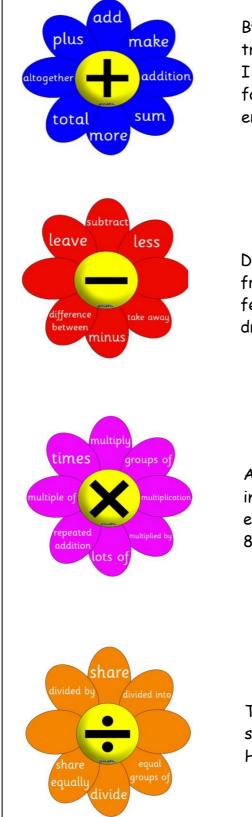
(O)rder (or 'OF' as in 'power of')
(D)ivide
(M)ultiply
(A)dd
(S)ubract

Therefore in the example above multiplication should be done before addition. (Note order means a number raised to a power such as 2^2 or $(-3)^3$)

Scientific calculators are programmed with these rules, however some basic calculators may not, so take care.

15 - 12 ÷ 6 BODMAS tells us to divide first Example 1 = 15 - 2 = 13 BODMAS tells us to work out the **Example 2** $(9+5) \times 6$ = 14 × 6 brackets first 84 = Example 3 18 + 6 ÷ (5-2) Brackets first = 18 + 6 ÷ 3 Then divide = 18 + 2 Now add = 20 18 - 6 + 2 Example 4 Add & subtract have equal priority = 12 + 2So subtract = 14 Then add

15

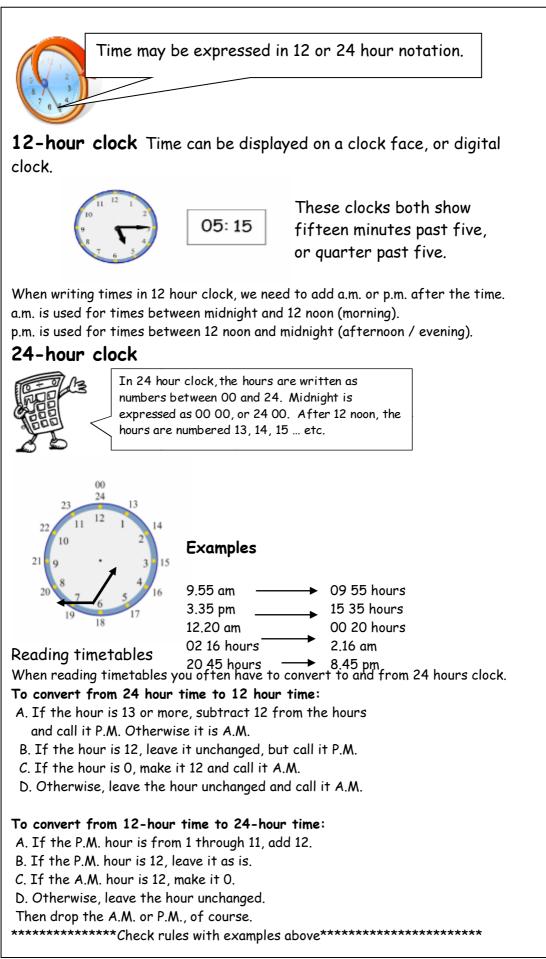


Operational Mathematical Literacy

Word problem tips:

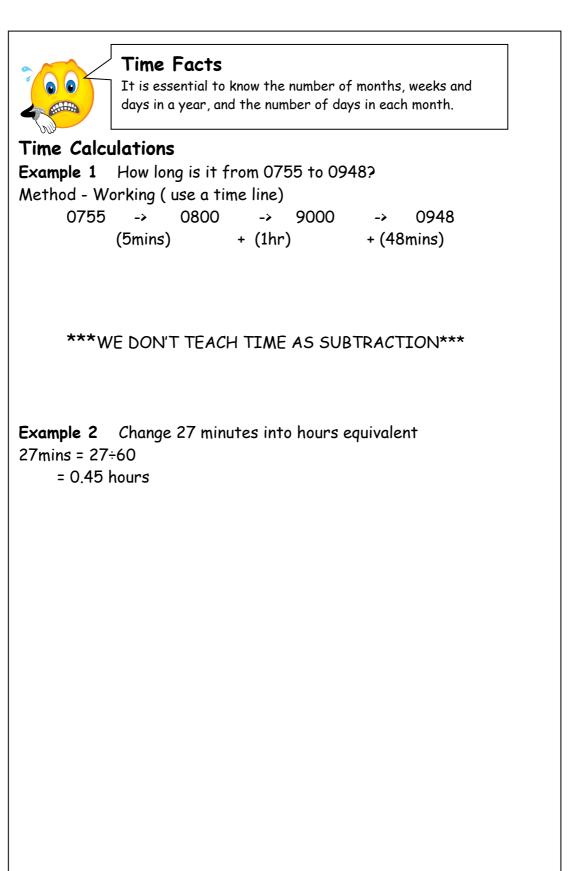
Look for any key words. Do you expect a bigger or smaller answer? Use this to help you decide which operation to use.

By the end of 2016 my car had travelled 8550 miles. During 2017 I drove a further 6400 miles. How far had my car travelled by the end of 2017?


During a storm a plane dropped from 34 5000 feet to 30 200 feet. By how much had it dropped?

A factory packages cans of soup in boxes. There are 24 cans in each box. What is the product of 8 boxes?

There are 192 pupils in first year, shared equally between 8 classes. How many pupils are in each class?



17

Time 2

Addition, subtraction, multiplication and division of fractions are studied in mathematics. However, the examples below may be helpful in all

subjects.

Understanding Fractions

Example

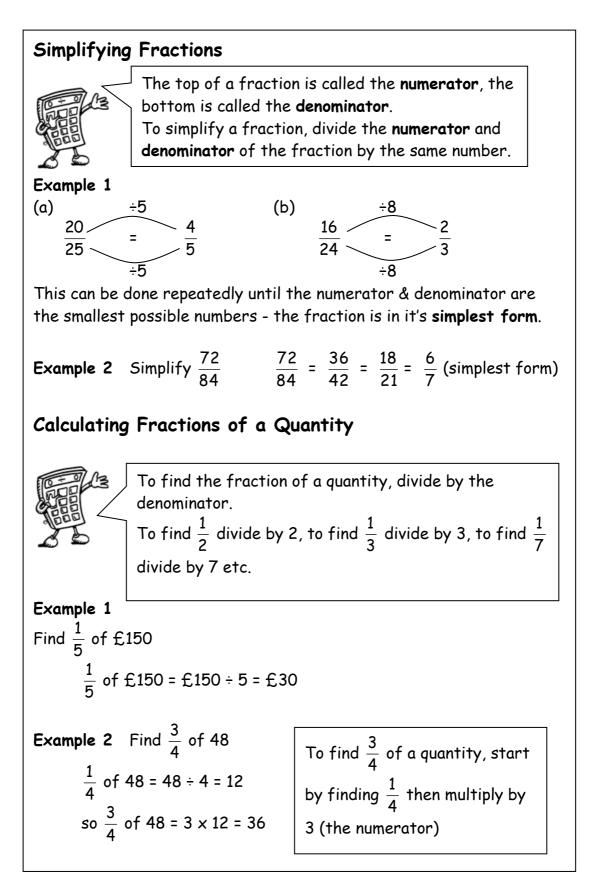
A jar contains black and white sweets.

What fraction of the sweets are black?

There are 3 black sweets out of a total of 7, so $\frac{3}{7}$ of the sweets are black.

Equivalent Fractions

Example What fraction of the flag is shaded?


6 out of 12 squares are shaded. So $\frac{6}{12}$ of the flag is shaded.

It could also be said that $\frac{1}{2}$ the flag is shaded.

 $\frac{6}{12}$ and $\frac{1}{2}$ are equivalent fractions.

Adding, Subtracting Fractions	
To add and subtract fra the denominators the sa fractions. Then you add numerators.	me by using equivalent
Example 1	Example 2
$\frac{1}{5} + \frac{3}{5} = \frac{4}{5}$	$\frac{2}{3} - \frac{1}{4}$
Both fractions have the same denominator so we can simply add the numerators	$=\frac{8}{12}-\frac{3}{12}$
add the numerators	$=\frac{5}{12}$
	Make denominators the same. Then subtract new numerators.

Multiplying, Dividing Fractions	5
together and the de	s multiply the numerators nominators together e turn the second fraction nd then multiply.
Example 1 Example $\frac{4}{5} \times \frac{2}{3} = \frac{8}{15}$ $\frac{2}{7} \div$ = $\frac{2}{7} \div$ = $\frac{2}{7} \div$	$\frac{3}{1}$ Remember to flip the second fraction!
Example 3 $\frac{4}{5} \times \frac{35}{36}$ Divide 4 into 36 and 5 into 35 to get: $\frac{1}{1} \times \frac{7}{9}$ $= \frac{7}{9}$	In cases of larger numbers it is easier to simplify these down by finding a number that divides into the numerator on the left hand-side and denominator on the right hand side fraction, then finding a number that divides the denominator on the left hand-side and the numerator on the right.

Percent means out of 100. A percentage can be converted to an equivalent fraction or decimal.

36% means $\frac{36}{100}$ 36% is therefore equivalent to $\frac{9}{25}$ and 0.36

To change a fraction to a decimal (fraction) divide the numerator by the denominator

Common Percentages

Some percentages are used very frequently. It is useful to know these as fractions and decimals.

Percentage	Fraction	Decimal (Fraction)
1%	1 100	0.01
10%	$\frac{1}{10}$	0.1
20%	$\frac{1}{5}$	0.2
25%	$\frac{1}{4}$	0.25
33 ¹ / ₃ %	$\frac{1}{3}$	0.333
50%	<u>1</u> 2	0.5
66²/ ₃ %	$\frac{\frac{2}{3}}{\frac{3}{4}}$	0.666
75%	$\frac{3}{4}$	0.75

(0

Percentages 2

There are many ways to calculate percentages of a quantity. Some of the common ways are shown below.

Non- Calculator Methods

Method 1	Using	Equivalent	Fractions
----------	-------	------------	-----------

Example Find 25% of £640 25% of £640 = $\frac{1}{4}$ of £640 = £640 ÷ 4 = £160

Method 2 Using 1%

First find 1% of the quantity (by dividing by 100), then multiply to give the required value.

Example Find 9% of 200g 1% of 200g = $\frac{1}{100}$ of 200g = 200g ÷ 100 = 2g

so 9% of 200g = 9 x 2g = 18g

Method 3 Using 10%

This method is similar to the one above. First find 10% (by dividing by 10), then multiply to give the required value.

Example Find 70% of £35

10% of £35 =
$$\frac{1}{10}$$
 of £35 = £35 ÷ 10 = £3.50

so 70% of
$$\pounds$$
35 = 7 x \pounds 3.50 = \pounds 24.50

Or find 30% and then subtract this.

10% of £35 =
$$\frac{1}{10}$$
 of £35 = £35 ÷ 10 = £3.50

So
$$30\%$$
 of £35 = $3 \times £3.50 = £10.50$

24

Non- Calculator Methods (continued)							
The previous methods can be combined so as to calculate any percentage.							
Example	Find 23% of £15000						
	10% of £15000 = £1500 so 20% = £1500 x 2 = £3000 1% of £15000 = £150 so 3% = £150 x 3 = £450						
	23% of £15000 = $£3000 + £450 = £3450$						
Finding VA	Γ (without a calculator)						
	d Tax (VAT) = 20% F, firstly find 10% and then multiply that answer by 2.						
Example	Calculate the total price of a computer which costs ${ m \pounds650}$ excluding VAT						
	10% of £650 = £65 (divide by 10) 20% of £650 = £130 (multiply previous answer by 2)						
	so 20% of £650 = £130						
	Total price = £650 + £130 = £780						

Calculator Method

To find the percentage of a quantity using a calculator, change the percentage to a decimal, then multiply.

Example 1 Find 23% of £15000

23% = 0.23 so 23% of £15000 = $0.23 \times$ £15000 = £3450

We do **not** use the % button on calculators. The methods taught in the mathematics department are all based on converting percentages to decimals.

Example 2 House prices increased by 19% over a one year period. What is the new value of a house which was valued at £236000 at the start of the year?

> 19% = 0.19 so Increase = 0.19 x £236000 = £44840

Value at end of year = original value + increase = $\pounds236000 + \pounds44840$ = $\pounds280840$

The new value of the house is £280840

Finding the percentage To find a percentage of a total, first make a fraction, then convert to a decimal by dividing the top by the bottom. This can then be expressed as a percentage. Example 1 There are 30 pupils in Class 3A3. 18 are girls. What percentage of Class 3A3 are girls? $\frac{18}{30}$ $= 18 \div 30 = 0.6 \times 100 = 60\%$ 60% of 3A3 are girls Example 2 James scored 36 out of 44 his biology test. What is his percentage mark? Score = $\frac{36}{44}$ = 36 ÷ 44 = 0.81818... = 81.818..% = 82% (rounded)

When quantities are to be mixed together, the ratio, or proportion of each quantity is often given. The ratio can be used to calculate the amount of each quantity, or to share a total into parts.

Writing Ratios

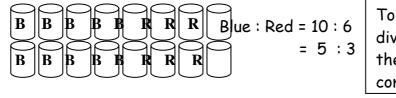
To make a fruit drink, 4 parts water is mixed with 1 part of cordial. The ratio of water to cordial is 4:1 (said "4 to 1") The ratio of cordial to water is 1:4.

Order is important when writing ratios.

Example 2

In a bag of balloons, there are 5 red, 7 blue and 8 green balloons.

The ratio of red : blue : green is 5 : 7 : 8

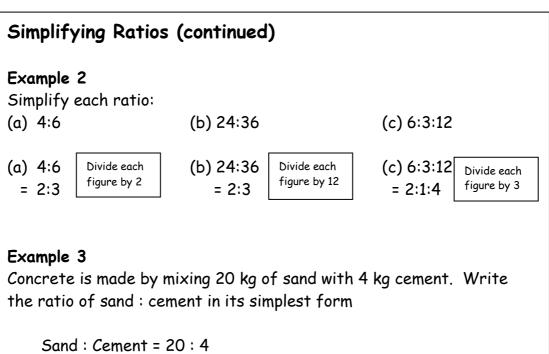

Simplifying Ratios

Ratios can be simplified in much the same way as fractions.

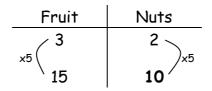
Example 1

Purple paint can be made by mixing 10 tins of blue paint with 6 tins of red. The ratio of blue to red can be written as 10 : 6

It can also be written as 5:3, as it is possible to split up the tins into 2 groups, each containing 5 tins of blue and 3 tins of red.



To simplify a ratio, divide each figure in the ratio by a common factor.


Ratio 2

and : Cement = 20 : 4 = 5 : 1

Using ratios

The ratio of fruit to nuts in a chocolate bar is 3 : 2. If a bar contains 15g of fruit, what weight of nuts will it contain?

So the chocolate bar will contain 10g of nuts.

Information Handling : Tables

It is sometimes useful to display information in graphs, charts or tables.

Example 1	The table below shows the average maximum
	temperatures (in degrees Celsius) in Barcelona and
	Edinburgh.

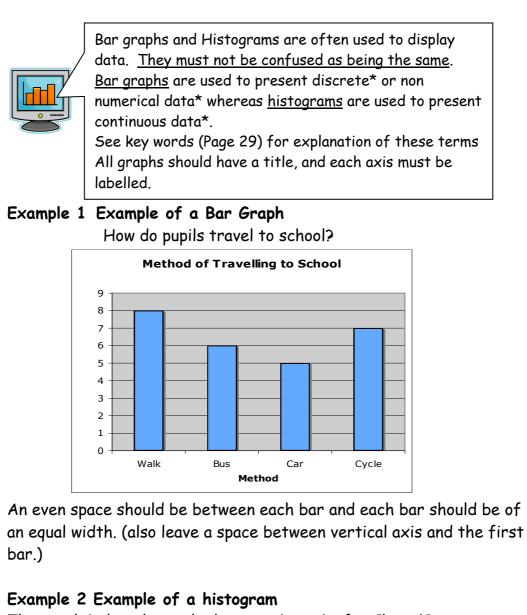
	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
Barcelona	13	14	15	17	20	24	27	27	25	21	16	14
Edinburgh	6	6	8	11	14	17	\18	18	16	13	8	6

The average temperature in June in Barcelona is $24^\circ \ensuremath{\mathcal{C}}$

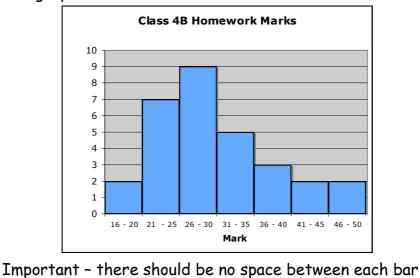
Frequency Tables are used to present information. Often data is grouped in intervals.

Example 2 Homework marks for Class 4B

273023242235243338431829282827333630435030252637352022243148


Mark	Tally	Frequency
16 - 20		2
21 - 25		7
26 - 30		9
31 - 35	ĺИ	5
36 - 40	ÍII	3
41 - 45		2
46 - 50		2

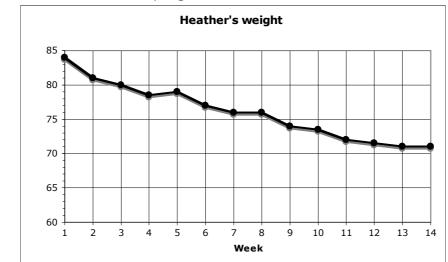
Each mark is recorded in the table by a tally mark. Tally marks are grouped in 5's to make them easier to read and count.



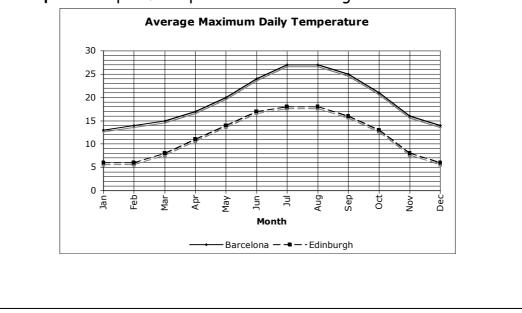
Information Handling : Bar Graphs/Histograms

The graph below shows the homework marks for Class 4B.

31



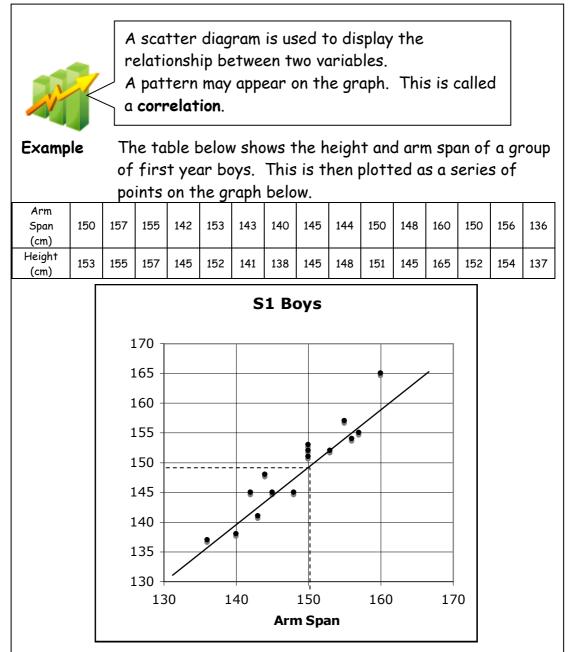
Information Handling : Line Graphs



Line graphs consist of a series of points which are plotted, then joined by a line. All graphs should have a title, and each axis must be labelled. The trend of a graph is a general description of it.

Example 1 The graph below shows Heather's weight over 14 weeks as she follows an exercise programme.

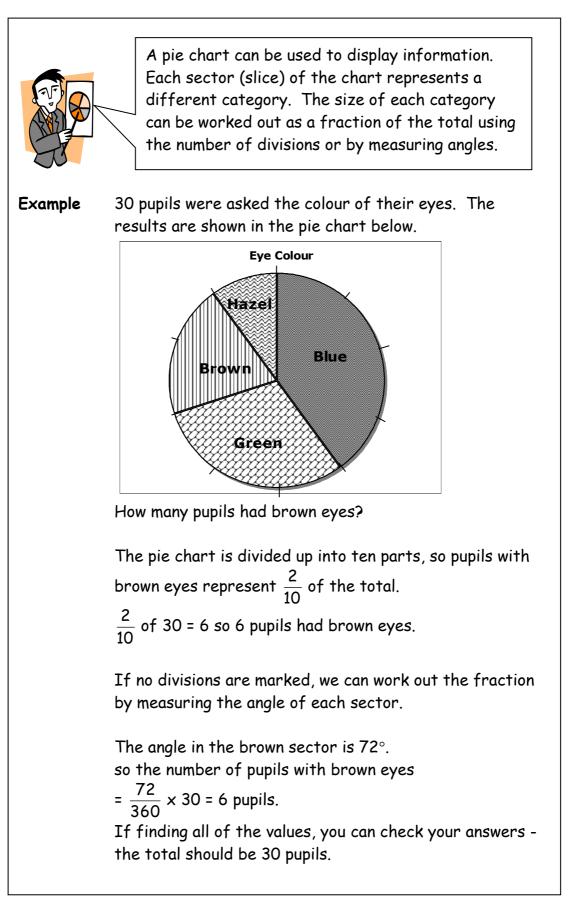
The trend of the graph is that her weight is decreasing.



Example 2 Graph of temperatures in Edinburgh and Barcelona.

Information Handling : Scatter Graphs

The graph shows a general trend, that as the arm span increases, so does the height. This graph shows a positive correlation.


The line drawn is called the line of best fit. This line can be used to provide estimates. For example, a boy of arm span 150cm would be expected to have a height of around 151cm.

Note that in some subjects, it is a requirement that the axes start from zero.

Information Handling : Pie Charts

Information Handling : Averages

To provide information about a set of data, the average value may be given. There are 3 ways of finding the average value - the mean, the median and the mode.

Mean

The mean is found by adding all the data together and dividing by the number of values.

Median

The median is the middle value when all the data is written in numerical order (if there are two middle values, the median is half-way between these values).

Mode

The mode is the value that occurs most often.

Range

The range of a set of data is a measure of spread. Range = Highest value - Lowest value

Example Class 1A scored the following marks for their homework assignment. Find the mean, median, mode and range of the results.

 $6, \quad 9, \quad 7, \quad 5, \quad 6, \quad 6, \quad 10, \quad 9, \quad 8, \quad 4, \quad 8, \quad 5, \quad 7$

Mean = $\frac{6+9+7+5+6+6+10+9+8+4+8+5+7}{10}$

=
$$\frac{90}{13}$$
 = 6.923... Mean = 6.9 to 1 decimal place

Ordered values: 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10 Median = 7

6 is the most frequent mark, so Mode = 6

Range = 10 - 4 = 6

Scientific Notation or Standard Form

In engineering and scientific calculations you often deal with very small or very large numbers, for example 0.00000345 and 870,000,000. To avoid writing these very long numbers a system has been developed, known as **scientific notation** (standard form) which enables us to write numbers much more concisely.

The rules when writing a number in standard form is that first you write down a number between 1 and 10, then you write × 10 (to the power of a number).

Example

Write 81 900 000 000 000 in standard form:

81 900 000 000 000 = 8.19 × 10¹³

It's 10¹³ because the decimal point has been moved 13 places to the left to get the number to be 8.19

Example

Write 0.000 001 2 in standard form:

0.000 001 2 = 1.2 × 10⁻⁶

It's 10⁻⁶ because the decimal point has been moved 6 places to the right to get the number to be 1.2

On a calculator, you usually enter a number in standard form as follows: Type in the first number (the one between 1 and 10). Press EXP . Type in the power to which the 10 is risen.

Interesting facts	
Mass of Earth	= 59742000000000000000000000 kg
	= 5.9742×10 ²⁴ kg
Mass of an electron	=0.00000000000000000000000000000000000

36

Mathematical literacy (Key words):

Add; Addition (+)	To combine 2 or more numbers to get one number (called the sum or the total) Example: 12+76 = 88
a.m.	(Ante meridiem) Any time in the morning (between midnight and 12 noon).
Approximate	An estimated answer, often obtained by rounding to nearest 10, 100 or decimal place.
Calculate	Find the answer to a problem. It doesn't mean that you must use a calculator!
Continuous Data	Has an infinite number of possible values within a selected range e.g. temperature, height, length.
Data	A collection of information (may include facts, numbers or measurements).
Discrete	Can only have a finite or limited number of possible values. Shoe sizes are an example of discrete data because sizes 6 and 7 mean something, but size 6.3 for example does not.
Denominator	The bottom number in a fraction (the number of parts into which the whole is split).
Difference (-)	The amount between two numbers (subtraction). Example: The difference between 50 and 36 is 14 50 - 36 = 14
Division (÷)	Sharing a number into equal parts. 24 ÷ 6 = 4
Double	Multiply by 2.

Equals (=)	Makes or has the same amount as.
Equivalent	Fractions which have the same value.
fractions	Example $\frac{6}{12}$ and $\frac{1}{2}$ are equivalent fractions.
Estimate	To make an approximate or rough answer, often by rounding.
Evaluate	To work out the answer.
Even	A number that is divisible by 2.
	Even numbers end with 0, 2, 4, 6 or 8.
Factor	A number which divides exactly into another number, leaving no remainder.
	Example: The factors of 15 are 1, 3, 5 and 15.
Frequency	How often something happens. In a set of data, the
. ,	number of times a number or category occurs.
Greater than (>)	Is bigger or more than.
	Example: 10 is greater than 6.
	10 > 6
Least	The lowest number in a group (minimum).
Less than (<)	Is smaller or lower than.
	Example: 15 is less than 21. 15 < 21.
Maximum	The largest or highest number in a group.
Mean	The arithmetic average of a set of numbers - see p27.
Median	Another type of average - the middle number of an
	ordered set of data - see p27
Minimum	The smallest or lowest number in a group.
Minus (-)	To subtract.
Mode	Another type of average – the most frequent number or category (see p27).
Most	The largest or highest number in a group (maximum).
Multiple	A number which can be divided by a particular number,

	leaving no remainder. Example Some of the multiples of 4 are 8, 16, 48, 72
Multiply (x)	To combine an amount a particular number of times. Example $6 \times 4 = 24$.
Negative Number	A number less than zero. Shown by a minus sign. Example -5 is a negative number.
Numerator	The top number in a fraction.
Non-Numerical data	Data which is non-numerical e.g. favourite football team, favourite sweet etc.
Odd Number	A number which is not divisible by 2. Odd numbers end in 1, 3, 5, 7 or 9.
Operations	The four basic operations are addition, subtraction, multiplication and division.
Order of operations	The order in which operations should be done. BODMAS (see page 8).
Place value	The value of a digit dependent on its place in the number. Example: in the number 1573.4, the 5 has a place value of 100.
p.m.	(Post meridiem) Any time in the afternoon or evening (between 12 noon and midnight).
Prime Number	A number that has exactly 2 factors (can only be divided by itself and 1). Note that 1 is not a prime number as it only has 1 factor.
Product	The answer when two numbers are multiplied together. Example: The product of 5 and 4 is 20.
Remainder	The amount left over when dividing a number.
Share	To divide into equal groups.
Sum	The total of a group of numbers (found by adding).

TIMELINE

The following topics are covered in S1 and S2 in the Mathematics department:

Торіс	Month
<u>Decimals</u>	August
 Looking back 	
 Addition & subtraction without a calculator 	
 Rounding to one decimal point 	
 Multiplying & dividing by 10, 100 	
 Multiplying & dividing decimals by whole numbers 	
 Multiplying & dividing on a calculator 	
Angles	September
 Looking back 	
 Corresponding angles 	
Alternate angles	
Letters & Numbers	September
 Order of operations (BODMAS) 	
 Looking back 	
Like terms	
Position & Movement	September
 Looking back 	- October
• Bearings	
Coordinates in four quadrants	
Whole numbers	October -
 Whole number calculations 	November
 Squares, cubes and square roots 	
 Factors & prime factors 	
 Working with integers: below zero 	
 Subtracting integers 	

- Multiplying integers
- Dividing integers
- Sum, difference, product, quotient

 <u>Tiling and Symmetry</u> Looking back (line symmetry) Rotation & rotational symmetry Translation & translational symmetry Enlargement & reduction 	November
 <u>Decimals</u> Adding & subtracting Rounding to more than one decimal place Further multiplication & division Significant figures 	November
 Letters & Numbers Repeated adding & multiplying Evaluating squares Removing brackets Factorising expressions 	December
 <u>Measuring length</u> Looking back Reading scales Calculating perimeter using scales 	December
 Information Handling Looking back Organising information Summarising/comparing data: mean Summarising/comparing data: median, mode & range Grouped frequency tables 	January
Time & Temperature• Looking back• Timetables• Using stopwatches	January - February

Topic

- Calculating speed
- Calculating distance
- Calculating time
- Which formula?

<u>Area</u>

- Looking back
- Using formulae
- Right-angled triangles
- Any triangle

Solving Equations

- Looking back
- Keeping your balance
- Inequations
- Solving more equations
- Negative numbers & expressions
- Negative numbers & equations
- Brackets & equations

<u>The Triangle</u>

- Looking back
- The sum of angles in a triangle
- Drawing triangles
- Measuring heights & distance
- The exterior angles of a triangle

Three Dimensions

- Looking back
- Pyramids & prisms
- Drawing solids
- Skeletal models
- Nets of pyramids & prisms
- Surface area
- Volumes of cubes & cuboids

Information Handling 2

- Looking back
- Displaying data: line graphs

February

February -March

March

April

May

• Displaying data: pie charts

 Fractions & Percentages Looking back Finding the fraction of an amount Calculating the percentage of an amount Using percentages Rational numbers Equivalent fractions & mixed numbers Adding & subtracting common fractions 	Μαγ
Letters, Numbers & Sequences • Looking back • The shape of numbers • The nth term from multiples • Rule-making • Problem-solving	May - June
<u>Two Dimensions</u> • Looking back • Square & rectangle • Rhombus & kite • Parallelogram & trapezium	June
Ratio & Proportion• Looking back• Ratios• Unitary ratios• Sharing• Direct proportion• Graphing direct proportion• Inverse proportion• Mixed examples	August